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Coded exposure photography is a promising computational imaging technique capable of addressing motion blur
much better than using a conventional camera, via tailoring invertible blur kernels. However, existing methods
suffer from restrictive assumptions, complicated preprocessing, and inferior performance. To address these issues,
we proposed an end-to-end framework to handle general motion blurs with a unified deep neural network, and
optimize the shutter’s encoding pattern together with the deblurring processing to achieve high-quality sharp
images. The framework incorporates a learnable flutter shutter sequence to capture coded exposure snapshots
and a learning-based deblurring network to restore the sharp images from the blurry inputs. By co-optimizing the
encoding and the deblurring modules jointly, our approach avoids exhaustively searching for encoding sequences
and achieves an optimal overall deblurring performance. Compared with existing coded exposure based motion
deblurring methods, the proposed framework eliminates tedious preprocessing steps such as foreground segmen-
tation and blur kernel estimation, and extends coded exposure deblurring to more general blind and nonuniform
cases. Both simulation and real-data experiments demonstrate the superior performance and flexibility of the
proposed method. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.489989

1. INTRODUCTION

Due to the limited frame rate of imaging devices and the inevi-
table instability during capturing, motion blur has become a
common problem in daily photography. It not only degrades
the photo’s visual quality, but also imposes a great challenge
on subsequent high-level vision tasks such as image classifica-
tion [1], object detection [2], and object tracking [3]. To cope
with this problem, various postprocessing deblurring algo-
rithms have been designed by the computer vision (CV) com-
munity in the past decades [4–6]. On the other hand,
researchers from the computational imaging (CI) field have also
proposed many approaches to tackle this problem by jointly
considering the imaging and postprocessing processes
[7–13]. Coded exposure photography [14] is one of the most
representative methods among these approaches, and has re-
ceived much attention since being proposed [15–20].

A. Coded Exposure Photography
Different from conventional photography keeping the camera’s
shutter open throughout the entire exposure elapse, the coded
exposure technique flutters the shutter open and closed accord-
ing to the designed binary sequence in the exposure duration.

In this manner, the captured blurry images can better preserve
high-frequency details, thus facilitating a subsequent deblurring
process [14]. For simplicity, we take one-dimensional (1D) mo-
tion as an instance to explain the underlying mathematical
principle. It is known that the spatially uniform blur can be
formulated as the convolution between the sharp image and
the blur kernel, which is determined by the motion trajectory
and the exposure pattern (i.e., the flutter shutter). The differ-
ence between conventional and coded exposure is demon-
strated in Fig. 1.

From the spatial perspective, under conventional exposure
the resulting blur kernel is a continuous line, and the corre-
sponding blurry image features continuous blurry edges accord-
ingly. By contrast, the blur kernel under coded exposure is an
intermittent line and produces edge fringes along the motion
trajectories, which is a superimposition of a sequence of sharp
snapshots.

From the frequency perspective, the blurring process can be
regarded as a frequency sampling or filtering operation since
convolution in the spatial domain is equivalent to multiplica-
tion in the frequency domain [21]. As can be seen from Fig. 1,
the spectrum of the blur kernel resulting from conventional
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exposure is a band-limited sinc function with periodic zeros and
significant attenuation at higher frequencies, so the deblurring
is strongly ill-posed. On the contrary, the spectrum of the blur
kernel under coded exposure has no zeros and features a rela-
tively flat magnitude across the whole spectrum. Therefore, by
controlling the camera shutter with specially designed binary
sequences, coded exposure photography can better preserve in-
formation of different frequencies and facilitate inverting the
blur artifacts to obtain sharp images.

B. Coded Exposure Based Image Deblurring
Based on the fundamental principle of coded exposure deblur-
ring, many works seeking to explore efficient exposure patterns
(i.e., the coding sequence) have popped up. In the original pa-
per of coded exposure photography [14], Raskar et al. per-
formed an in-depth analysis of the blur kernels’ invertibility
and proposed to select coding sequences via maximizing the
minimal value of the spectrum’s magnitude and minimizing
the variance of the spectrum values. Since one needs to estimate
the blur kernel before deblurring process, Agrawal and Xu fur-
ther took the blur kernel estimation process into consideration
[15]. They found that the kernel of a smooth blur is easier to
estimate via alpha matting and thus proposed to maximize the
number of continuous ones and minimize the 0–1 transitions
in the encoding sequence. Later, McCloskey et al. incorporated
natural image statistics into encoding sequence design and
achieved a significant reduction in reconstruction error [22].
Differently, Jeon et al. introduced the concept of low-autocor-
relation binary sequences and a new measure for good shutter
sequence [23]. Apart from the single-image deblurring meth-
ods, there are also some other works investigating deblurring
from multiple coded exposure snapshots and corresponding
code design [19,20].

Although various criteria for encoding sequence design have
been proposed, and corresponding kernel estimation and de-
blurring algorithms are both improved, there still exist signifi-
cant drawbacks for existing coded exposure deblurring
methods. On the one hand, previous encoding sequence design
is mainly based on handcrafted criteria and relies on random
searching to find the optimal code. However, handcrafted cri-
teria can hardly make extensive use of the natural image prior,
which is important in image restoration. Besides, the random
searching strategy is usually inapplicable in long sequence de-
sign due to its exponential expanding of search space. On the
other hand, most coded exposure deblurring algorithms are still

limited to handling uniform (i.e., spatially invariant) blur and
rely on tedious pipelines involving foreground segmentation,
blur kernel estimation, deblurring, compositing, etc., to finish
the deblurring task. These issues greatly limit their applications
in motion-blur-free photography.

C. Deep Learning Based Image Deblurring
In recent years, deep learning has been popularized to cope with
various CV problems and achieves significant performance pro-
motion compared with conventional algorithms [24].
Benefiting from the powerful representation ability of deep
neural networks (DNNs), novel learning-based deblurring
methods have been developed and successfully applied to han-
dling the tough spatially varying/nonuniform blur [6]. Besides,
these methods also eliminate the preliminary step of blur kernel
estimation involved in traditional deblurring algorithms and
operate in an efficient end-to-end manner, which is called blind
deblurring. Instead of formulating the blurring model as the
convolution between a sharp image and the blur kernel, recent
learning-based deblurring algorithms directly average consecu-
tive video frames to synthesize the blurry image so as to sim-
ulate the more general cases. Nah et al. collected a widely used
high-frame-rate video dataset called GoPro for blurry image
simulation and proposed a deep multi-scale convolution neural
network (CNN) to restore the latent sharp image [25]. Since
then, the multi-scale “coarse-to-fine” scheme has become a
widely used architecture for deep learning based deblurring
[26–30]. Tao et al. further introduced the recurrent strategy
into the multi-scale architecture and proposed the scale-recur-
rent network for image deblurring [26]. Differently, Zamir et al.
[27] proposed a multi-stage progressive network and achieved
excellent performance on various image restoration tasks in-
cluding deblurring. Most recently, Cho et al. developed a
multi-input multi-output U-net (MIMO-UNet) for single-im-
age deblurring by revisiting the coarse-to-fine strategy [28], and
Mao et al. extended their work by introducing a novel Fourier
transformation based residual module [29]. Both methods
achieved state-of-the-art (SOTA) performance in blind nonuni-
form single-image deblurring.

Although DNN-based deblurring algorithms have surpassed
conventional optimization, which is of inferior performance,
tedious pipelines, and significant limitations in practical appli-
cations, they have also encountered bottlenecks. On the one
hand, the high frequencies lost in the blurry images or the in-
trinsic ill-posedness of the deblurring problem determine the
performance upper-bound of learning-based algorithms.
Even though some generative networks such as the variational
autoencoder (VAE) [31] and generative adversarial networks
(GANs) [32] could produce plausible results by imposing
strong priors of nature scenes, they cannot reconstruct perfect
results in image restoration problems. On the other hand, after
years of progress in network design and hyper-parameter fine-
tuning, the performance advances of deblurring neural net-
works have slowed down, but the practical applicability is still
largely limited, especially in scenarios with complex motion or
realistic noise. Fortunately, recent advances in high-level CV
tasks such as semantic information retrieval have demonstrated
that combining both CI and CV [33–35] to draw on each
other’s strengths can gain an overall performance promotion.
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Fig. 1. Physical formation of blurring artifacts under conventional
and coded exposure settings, and analysis in spatial and frequency
domains.
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Inspired by this new trend, we revisit coded exposure deblur-
ring and combine it with recent advances in deep learning to
unlock insights to boost the deblurring performance and
broaden its applicability.

D. Contributions of this Paper
Here we propose a novel single-image motion deblurring
framework incorporating a coded exposure based imager and
a learning-based deblurring network jointly. We co-optimize
the imager’s exposure pattern and the parameters of the deblur-
ring network to achieve an optimal overall performance while
avoiding the high-complexity exhaustive search of the encoding
sequence and complex preprocessing steps. Besides, with the
aid of deep learning’s powerful representation ability, we loosen
the strict assumptions of previous coded exposure based deblur-
ring methods and can handle general motion blur blindly. To
the best of our knowledge, this is the first work applying coded
exposure photography in learning-based end-to-end blind non-
uniform deblurring.

The contributions of this work can be summarized as
follows.

• We successfully extend coded exposure deblurring to
blind and nonuniform scenarios leveraging the recent advances
in deep learning.

• We propose a novel data-driven encoding sequence design
method by co-optimizing the optical encoder and the deblur-
ring network.

• We build a coded exposure imaging prototype and dem-
onstrate the high performance of the proposed method on both
real and simulated data.

• The proposed approach is easy to use, widely applicable,
and of advantageous performance, which pushes forward the
applications of coded exposure photography.

2. ENCODER–DECODER CO-OPTIMIZATION
FRAMEWORK

The overall flowchart of the proposed coded exposure blur en-
coding and learning-based deblurring co-optimization frame-
work is demonstrated in Fig. 2. In the training stage, we
model the physical imaging process as an optical blur encoder
in accordance with the fundamental principle of coded expo-
sure photography. Then, a CNN-based blur decoder is em-
ployed to estimate the latent sharp image from its coded
blurry counterpart generated from the optical blur encoder.
It is worth noting that both the optical blur encoder and
the CNN-based blur decoder are optimized jointly during
the training period. In this manner, the encoding sequence
of the coded exposure and the parameters of the deblurring
CNN will be updated simultaneously, allowing us to find a sol-
ution superior to the separate optimization. In the inference
phase, the optical blur encoder is replaced with the real acquis-
ition process, and the optimized encoding sequence is loaded to
a camera as the shutter trigger signal accordingly. The trained
CNN model will also be saved to perform the deblurring task
for the real-captured coded blurry images.

In the following subsections, we will give a detailed descrip-
tion about the design and implementation of each module in
the framework.

A. Learnable Optical Blur Encoder
To describe general nonuniform blurry images efficiently, we
discard the convolution-based blur simulation method widely
used in previous works. Instead, recalling that the digital cam-
era records a blurry image by continuously accumulating light
signals from a dynamic scene on the sensor during the exposure
period, we thus regard the blurry snapshot as a summation of
sharp images describing the scene in a continuous sequence of

t

Training: optical blur encoder Training: learning-based blur decoder

Inference: practical deblurring pipeline

t0
1

video frames coded blurring model blurry image CNN deblurred image ground truth

forward backwardloss

t

Fig. 2. Overall flowchart of the proposed framework. The coded exposure imaging system and the learning-based deblurring algorithm are
respectively modeled with an optical blur encoder and a computational blur decoder, and together form an end-to-end differentiable forward model.
In the training stage, the parameters of the whole model are optimized together through gradient descent until convergence. In the inference stage,
the learned encoding sequence will be loaded to the controller of the camera shutter (or its equivalent), and the computational blur decoder will be
employed to deblur the captured coded blurry images.
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sufficiently short time slots. When taking the coded exposure
into consideration, some of the exposure segments correspond-
ing to the “close-shutter” state will be blocked out during the
sensor integration. Therefore, the exposure encoding sequence
actually serves as binary weights for these sharp images during
the integration. Denoting the exposure duration as T , the
scene’s radiation at t as S�t�, and the shutter’s trigger signal
as e�t�, the coded blurry image B can be mathematically for-
mulated as

R
T
t�0 S�t�⋅e�t�dt, which can be further discretized

into

B �
XM
i�1

S�i�⋅e�i�: (1)

Here M is the length of the encoding sequence and also the
number of the short time intervals, S�i� and e�i� represent
the ith short-exposure sharp image and corresponding binary
encoding code, respectively. Note that we omit the camera’s
response function and postprocessing steps such as gamma
transformation, which can be calibrated and compensated be-
forehand in real applications.

The selection of the encoding sequence is intrinsically
a binary optimization problem, which is difficult for both
conventional optimization and deep learning. Fortunately,
there are mature solutions in deep learning to enable back-
propagation training of binary parameters, and we employ a
widely used technique called “straight-through-estimator”
(STE) [36,37] in our work. Specifically, in the optical blur
encoder, instead of directly defining a binary encoding se-
quence, we employ the reparameterization trick [31] by intro-
ducing a learnable parameter vector b ∈ RM and deriving the
desired binary sequence e via a sign function

e � 1

2
�sign�b� � 1� (2)

with

sign�x� �
8<
:

�1, x > 0
0, x � 0
−1, x < 0

: (3)

Considering that the sign function is not differentiable at zero
and its derivative vanishes (i.e., equals 0) at other points, the
STE technique introduces a clip function to serve as the deriva-
tive of the sign function instead, which enables the back-
propagation through gradient descent during network training.
The clip function is formulated as follows:

clip�x, −1, 1� � max�−1, min�1, x��: (4)

B. Learning-Based Blur Decoder
With the flourishing development of deep learning, a number
of deep deblurring neural networks have been proposed and
achieved superior performance to traditional optimization-
based methods [5,6]. In the proposed co-optimization de-
blurring framework, we employ a SOTA deblurring CNN
called DeepRFT [29] to estimate the latent sharp image from
its coded blurry counterpart. As an end-to-end blind deblur-
ring method, DeepRFT eliminates the tedious blur kernel

estimation and pre-/post-processing steps required in conven-
tional coded exposure deblurring methods.

The basic architecture of DeepRFT is shown in Fig. 3. It
employs an MIMO-UNet [28] empowered by several specially
designed feature extraction and fusion modules. Like many
other deblurring networks, DeepRFT adopts the multi-scale
strategy to facilitate deblurring by aggregating information
from various spatial scales. Specifically, it first down-samples
the blurry images to generate another two blurry images that
are half and a quarter of the original spatial resolution, respec-
tively. Then these three blurry images are sequentially input to
the network and deblurred at different stages. Accordingly,
multi-scale losses are employed during training to measure the
distance between the outputs of different spatial scales and their
respective ground truth. DeepRFT further replaces the vanilla
convolution layer with the depth-wise over-parameterized
convolutional layer (DO-Conv) [38] to achieve additional
performance gains. DO-Conv is realized by enhancing the
conventional convolution layer with an additional depth-wise
convolution that convolves each input channel with a different
two-dimensional (2D) convolution kernel, and has demon-
strated superior performance in many vision tasks. The upper-
most contribution of DeepRFT lies in proposing a novel
Res-FFT-Conv Block, which augments the canonical ResBlock
[39] with an extra frequency-domain convolution branch. The
branch is implemented with 2D fast Fourier transformation
(FFT), and helps to provide supplementary information from
the frequency domain. In brief, the designed Res-FFT-Conv
Block can effectively model the frequency discrepancies between
the blurry and sharp image pairs, and can also capture both the
long-term and short-term interactions to facilitate the deblurring
process.

It is worth noting that although we choose DeepRFT as the
coded blur decoder in the current implementation of the pro-
posed framework thanks to its superior performance and low
computation complexity, it can be flexibly switched to other
learning-based deblurring networks to keep up with the latest
advances in the CV deblurring field.

C. Loss Function
The loss function for model training consists of the following
three terms.

Multi-scale Charbonnier loss [27] penalizes the deviation
of the estimated sharp image from its ground-truth version
at different spatial scales:

AFF

AFF

SC

SC

Feature attention moduleRes FFT-Conv Blocks Transpose Conv

AFF Asymmetric feature fusion SC Shallow convolution ConcatenationElement-wise addition

Downsample
2

DO-Conv Blocks

Fig. 3. Architecture of the deblurring neural network DeepRFT
[29] in the proposed framework.

Research Article Vol. 11, No. 10 / October 2023 / Photonics Research 1681



L1 �
XN
n�1

1

pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kÎn − Ink2 � ε2

q
, (5)

where N is the total number of spatial scales adopted by the
multi-scale deblurring strategy of DeepRFT; pn, În, and In re-
present the number of pixels, the estimated sharp image, and
the corresponding ground-truth image at scale n, respectively;
ε is a small constant to guarantee differentiability and is em-
pirically set to be 10−3 (the same as below).

Multi-scale edge loss is defined as [27]

L2 �
XN
n�1

1

pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kΔÎn − ΔInk2 � ε2

q
, (6)

with Δ representing the Laplacian operator, which forces high
consistency between the edges of the recovered sharp image and
those of the ground truth.

Multi-scale frequency reconstruction loss [28] is also intro-
duced to guide the prediction towards the latent sharp image
but defined in the Fourier domain

L3 �
XN
n�1

1

pn
kF �În� − F �In�k1, (7)

where F denotes the FFT.
The final loss function is defined as a weighted summation

L � L1 � γ1L2 � γ2L3, where the weighting coefficients γ1
and γ2 are empirically set to 0.05 and 0.01, respectively.

D. Prototype Building
Coded exposure imaging requires the camera to flutter its shut-
ter according to the designed binary encoding sequence during
the exposure period. Although not commonly used on com-
mercial cameras, this feature can be implemented with photo-
electric devices. One can either introduce an extra external
shutter synchronized by a micro-controller [14] or directly em-
ploy the cameras supporting IEEE DCAM Trigger Mode 5
[15,19,22] to customize the exposure sequence. For simplicity
and high compatibility with most commercial cameras, we

adopt the external shutter scheme to validate the proposed
approach.

The prototype of our coded exposure imaging system is
shown in Fig. 4. Apart from the conventional RGB camera
(JAI GO-5000C-USB), it also consists of a liquid crystal optical
shutter (Thorlabs LCC1620), a camera lens (KOWA,
12.5 mm/F1.4), and a micro-controller (Arduino Nano). The
liquid crystal optical shutter is composed of a liquid crystal cell
sandwiched between a pair of orthogonal polarizers. It has an
average transmittance above 60% in the open state over the
visible-light wavelength range and a contrast ratio (defined
as the ratio of the transmittance in the open state to the trans-
mittance in the close state) exceeding 8000:1. During acquis-
ition, the micro-controller produces optimized binary voltage
signals to control the shutter’s open/close state by changing
the liquid crystal’s molecule orientation. Meanwhile, the
micro-controller also functions to synchronize the camera with
the shutter.

3. EXPERIMENTS

A. Implementation Details
In the following experiments, we employ the widely used
high-frame-rate video dataset GoPro [25] to simulate coded
blurry snapshots, train our network, and evaluate the proposed
framework’s performance. GoPro dataset is acquired using a
GOPRO4 Hero Black camera at 240 frames per second (FPS).
It contains approximately 35,000 sharp images in total, about
two thirds of which are used for training and the rest for testing.
Unless otherwise stated, the length of the exposure encoding
sequence is set to 32 in the experiments; i.e., 32 sharp images
from the dataset would be weighted by the binary encoding
sequence and then collapsed to a single coded blurry image
by the optical blur encoder. Besides, we also normalize the
coded blurry images to [0,1] and add Gaussian noise with a
standard deviation ranging from 0 to 0.02 to mimic the physi-
cal imaging process.

We implement the framework with PyTorch [40] and con-
duct the experiments on a workstation equipped with an AMD
Ryzen Threadripper 3970X CPU and an NVIDIA GeForce
RTX 3090 GPU. In the training phase, we adopt the Adam
optimizer [41] to update the parameters and initialize the learn-
ing rate to 2 × 10−4. The learning rate is steadily decayed to
1 × 10−6 using the cosine annealing strategy [42] after two
rounds of warmup. For each training iteration, we randomly
crop the video frames to 256 × 256 pixels and apply flip oper-
ations as the data augmentation trick to increase the dataset’s
diversity. During testing, the slicing window crop method with
a stride of 256 pixels is employed to create 256 × 256 image
patches. Patch-wise deblurring and patch merging are then per-
formed to restore the latent sharp image. It should be noted
that the patch-wise processing is not a necessary requirement,
but rather a testing trick. Previous studies have shown that it
can enhance performance slightly by ensuring constant patch
size during training and testing [43].

It is worth noting that the STE technique might introduce
instability during training, and thus we employ a multi-step
training strategy to mitigate this issue. Specifically, the learn-
ing-based blur decoder (DeepRFT) is first pretrained for

External shutter

Lens

Microcontroller

Sensor

Fig. 4. Prototype system for coded exposure photography. It em-
ploys a liquid crystal element to serve as an external shutter for expo-
sure encoding.
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150 epochs with the parameters of the optical blur encoder
fixed, and then the whole framework is trained for another
450 epochs until converged.

B. Performance Evaluation and Analysis
To quantitatively evaluate the performance of the proposed co-
optimization framework, we first compare them with the con-
ventional noncoded deblurring method and SOTA coded ex-
posure deblurring methods [14,15,23,44]. As mentioned
above, most existing approaches focus on the design of expo-
sure encoding sequences while employing traditional optimiza-
tion-based deblurring algorithms and assuming uniform blur
kernels. However, in this work, we aim for the more general
blind and nonuniform deblurring problem. Therefore, for a fair
comparison, we only change the encoding sequence in the op-
tical encoder according to the competing methods, and adopt
the same deblurring network architecture in the blur decoder to
conduct blind nonuniform deblurring. Besides, for different
encoding sequences, the deblurring network is separately
trained from scratch on the same dataset.

The performance of different exposure codes is compared in
terms of the peak signal-to-noise ratio (PSNR) and structural

similarity index measure (SSIM) on the GoPro dataset. The
results are listed in Table 1, arranged by the time being pro-
posed. Two deblurring experiments conducted on a spatially
invariant blurry image (the “cars”) and a spatially varying blurry
image (the “flowers”) are shown in Fig. 5 for visual comparison
as well. It can be observed that the proposed co-optimization
deblurring framework demonstrates a significant improvement
over all competing methods, and its PSNR and SSIM gains
compared with the second-best competitor by Cui et al.
[44] are 1.44 dB and 0.0338, respectively. Qualitatively, as
shown in Fig. 5, while all the methods demonstrate obvious
blur-removing effects with the aid of the deep blur decoder’s
powerful image restoration ability, the proposed method pro-
vides more clear background and sharper structures across all
parts of the restored image. On the contrary, the competitors
suffer from ringing artifacts and fail to recover the sharp details
in some regions. Overall, the performance promotion of the
proposed framework in both the quantitative indices and quali-
tative visualization proves the effectiveness of the designed co-
optimization framework and embodies the advantages of data-
driven feature learning compared with hand-crafted criteria in
encoding sequence design.

Table 1. Deblurring Performance with Different Encoding Sequencesa

Methods Noncoded Raskar et al. [14] Agrawal and Xu [15] Jeon et al. [23] Cui et al. [44] Ours

Sequence (Hex) FFFFFFFF F1CD448D 7FFC2747 16A3809B 8076A061 11CFF48C
PSNR (dB)/SSIM 24.56/0.7695 24.37/0.7638 24.60/0.7695 25.47/0.8035 26.66/0.8289 28.10/0.8627

aThe encoding sequences are written in hexadecimal for simplicity.

OursNon-coded Raskar et al. Agrawal et al. Jeon et al. Cui et al.

Fig. 5. Synthesized blurry images under different exposure encoding settings and corresponding deblurring results. (Please zoom in for a better
view.)
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From Table 1, we can also observe that nearly all of the
coded exposure deblurring methods achieve superior perfor-
mance to the noncoded deblurring method, and their per-
formance features a monotone increasing tendency, which
validates the higher effectiveness of novel encoding sequence
design criteria than the elder ones. Note that, different from
other coded exposure deblurring methods, Raskar et al. [14]
unexpectedly achieved inferior performance to the noncoded
deblurring method. This is probably due to the trade-off be-
tween the encoding efficiency and signal-to-noise ratio
(SNR) in coded exposure deblurring. To be specific, although
coded exposure imaging can facilitate the preservation of image
information at all frequencies, it will also sacrifice some light
and cause a lower SNR hindering the deblurring process.
Therefore, not all coded exposure deblurring methods but
the ones with highly efficient encoding sequences could achieve
better performance than the conventional noncoded deblurring
method in practical applications. We further plot the frequency
spectra of different encoding sequences in Fig. 6 to provide an
intuitive visualization of their common properties. As can be
seen from the figure, all the spectra of the coded exposure se-
quences share some common features including no zero points
and relatively flat amplitude, which conform well with the fun-
damental theoretical analysis of coded exposure deblurring.

Next, we conduct another ablation experiment to study the
influence of the sequence length on our deblurring perfor-
mance. Learnable encoding sequences of 8, 16, 32, and 64 bits
are tested in this experiment. Different from the previous eval-
uations, we use 64 consecutive sharp frames from the GoPro
dataset to serve as the blur encoder’s original input. Note that
we keep the number of input frames constant throughout the
experiment to simulate different coded blurry images taken
under the same exposure time. To match the length of the en-
coding sequences with the number of input frames, we upsam-
ple the 8-bit, 16-bit, and 32-bit encoding sequences to 64-bit
beforehand.

We report our experimental results in Fig. 7, from which
one can observe that the deblurring performance of our frame-
work increases monotonically with the increase of the sequence
length. In other words, for a specific exposure time, a longer

encoding sequence will result in better deblurring performance.
From the imaging perspective, given a certain duration of the
total exposure, a longer encoding sequence corresponds to a
shorter exposure elapse for each bit of the sequence, and the
corresponding images will be sharper accordingly. From the
optimization perspective, having more bits in the encoding
sequences will result in a larger searching space, which facilitates
finding a better solution. It is worth noting that, in practice,
there are still some limitations in increasing the length of en-
coding sequences. On the one hand, in network training, a
longer encoding sequence means more sharp frames are re-
quired to synthesize a coded blurry image. The huge data will
impose much pressure on the memory consumption, making it
the bottleneck for efficient training. On the other hand, in
hardware implementation, the length of the encoding sequence
in a single exposure will be restrained by the refresh rate of the
external programmable shutter.

C. Qualitative Demonstration on Real Data
In order to validate the effectiveness of the proposed framework
in real scenarios, we also use the built prototype system to cap-
ture encoded blurry snapshots of highly dynamic scenes and
reconstruct their sharp versions computationally. In the experi-
ment, we build an exemplar scene that contains a horizontally
moving car and a swinging flower to generate spatially varying
1D and 2D motion blurs. The system is placed approximately
50 cm in front of the scene. During acquisition, the exposure
time of the camera is set to 0.8 s, and thus each bit in the 32-bit
encoding sequences corresponds to 25 ms. The captured blurry
images are transferred from the sensor to the workstation
through a universal serial bus (USB). Afterward, these images
are deblurred with the corresponding pretrained deblur-
ring models. Averagely, it takes about 0.52 s to handle one
blurry image of 1280 × 1280 pixels with DeepRFT on our
workstation.

Figure 8 shows the captured blurry images and correspond-
ing deblurring results of our approach and other existing coded
exposure photography methods. One can observe that the re-
covered sharp image of our co-optimization deblurring frame-
work features sharper structures and clear background across
different regions. By contrast, the noncoded deblurring method
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and existing coded deblurring methods suffer from more arti-
facts and lower definition.

4. CONCLUSION AND DISCUSSION

In summary, we revisit the coded exposure technique and pro-
pose a novel co-optimization deblurring framework for simul-
taneous exposure pattern design and blind nonuniform image
deblurring. To the best of our knowledge, this is the first work
investigating the application of coded exposure photography
in learning-based end-to-end blind nonuniform deblurring.
By integrally modeling the whole process of blurry image for-
mation and sharp image estimation in a differentiable manner,
the proposed framework empowered by deep learning achieves
superior performance to the separate optimization. Besides,
compared with the previous exposure designs based on hand-
crafted criteria and random searching, the proposed frame-
work takes natural image prior into consideration via data-
driven network training and solves the nondifferentiable issue
in binary sequence optimization. Both the simulation experi-
ments on standard datasets and the real-data experiments on
our prototype have validated the effectiveness of the proposed
approach.

Note that the objective of this work is to design a general
deblurring framework combining CI and CV to bridge the gap
between the coded exposure technique and recent advances in
learning-based deblurring algorithms, rather than developing a
specific SOTA network architecture for the image deblurring
task. Therefore, the framework can flexibly incorporate other
learning-based deblurring networks to keep up with the
latest advances in the CV deblurring field. Besides, recent

development in novel binary neural networks could also pro-
vide possible variants for our network. We leave the extensions
to future investigations.

In the future, this work can be further extended in the fol-
lowing two directions. From the algorithm perspective, the net-
work architectures of the binary-modulation blur encoder and
the coded blur decoder in the proposed framework could be in-
vestigated and improved to achieve higher deblurring quality
and faster inference speed. From the application perspective,
apart from the coded motion blur, other types of blur resulting
from out-of-focus or lens aberration could also be involved in
designing a more comprehensive blur encoder, making it pos-
sible for the framework to cope with more complex blur artifacts
in an end-to-end manner. Furthermore, a more realistic noise
model could also be employed in training data simulation to raise
the deblurring network’s robustness in low-light conditions.
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